US009448834B2

a2 United States Patent

10) Patent No.: US 9,448,834 B2

Martos et al. 45) Date of Patent: Sep. 20, 2016
(54) AUTOMATED TESTING OF PHYSICAL USPC ittt seneneaes 718/1
SERVERS USING A VIRTUAL MACHINE See application file for complete search history.
(71) Applicant: Unitrends, Inc., Columbia, SC (US) (56) References Cited
(72) Inventors: Alberto Gonzalez Martos, Madrid U.S. PATENT DOCUMENTS
(ES); Vernon Keith Boland, Lexington, 7246254 B2 7/2007 Alur et al.
SC (US) 7487383 B2 2/2009 Bensinger
(73) Assignee: Unitrends, Inc., Columbia, SC (US) (Continued)
)) o) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Notice of Allowance on U.S. Appl. No. 14/497,846 dated May 20,
U.S.C. 154(b) by 0 days. 2016.
(Continued)
(21) Appl. No.: 14/924,459
) Filed: Oct. 27. 2015 Primary Examiner — Joseph Kudirka
(22) Filed: ct. 27, (74) Attorney, Agent, or Firm — Foley & Lardner LLP;
(65) Prior Publication Data John D. Lanza
US 2016/0048438 A1 Feb. 18, 2016 (57 ABSTRACT
L An illustrative method for validating integrity of a source
Related U.S. Application Data server backup includes receiving, at a recovery server, data
(63) Continuation of application No. 14/317,722, filed on ~ indicating a state of a data storage unit associated with a
Jun. 27, 2014, and a continuation of application No source server, creating a virtual hard drive image from the
14/497 846. filed on Sep. 26. 2014 ’ received data, and storing, in memory of the recovery server,
T P <5, ’ the created virtual hard drive image. The method also
(60) Provisional application No. 62/209,726, filed on Aug. includes booting a virtual machine using the stored hard
25, 2015. drive image and mounting a second drive image to the
virtual machine including tools facilitating access to an
(51) Int. CL operating system running on the virtual machine by an
GO6F 11/00 (2006.01) application running on the recovery server. The tools are
GO6F 9/455 (2006.01) prevented from being installed in an operating system run-
(Continued) ning on the source server. The method further includes
automatically detecting, by a recovery application running
(52) US. ClL on the virtual machine, that the drive includes the tools,
CPC s GO6F 9745558 (2013.01); GOGF 8/61 automatically installing, by the recovery application and
(2013.01); GOGF 9/441 (2013.01); GO6F without user intervention, the tools in the operating system
11/1469 (2013.01); GOGEF 2009/45579 running on the virtual machine, and controlling, by the
(2013.01); GO6F 2201/815 (2013.01) application running on the recovery server, applications
(58) Field of Classification Search runnlng on the virtual machine.

CPC GOG6F 9/45558; GO6F 11/1469; GO6F
2201/815 20 Claims, 8 Drawing Sheets
300
/
310y
BACKUP SERVER APPLICATION
FILES AND OPTIONALLY
QPERATING SYSTEM FILES

—

SELECT PAE INSTALLED
80y YES VIRTUAL MACHINE IMAGE

el R

MACHINE IMAGE FiLE WITH APPLICATION

350

360

370\
B0OT REPLICATED VIRTUAL
MACHINE IMAGE WITH

US 9,448,834 B2
Page 2

(51) Imt.CL
GO6F 11/14 (2006.01)
GO6F 9/445 (2006.01)
GO6F 9/44 (2006.01)
(56) References Cited

8,055,630
8,156,301
8,181,174

8,402,309

8,423,821
9,235,474
2005/0108593
2006/0074993
2007/0260831
2007/0300220

2008/0294933
2009/0125751
2009/0222496

U.S. PATENT DOCUMENTS
B2 11/2011 Dawson et al.
B1 4/2012 Khandelwal et al.
B2* 5/2012 Liu oo
B2* 3/2013 Timashev

Bl 4/2013 Keith, Jr.
B1 1/2016 Petri et al.

Al 5/2005 Purushothaman et al.
Al 4/2006 Pulamarasetti et al.

Al 112007 Michael et al.

AL* 12/2007 Seligercccceoveennne

Al 11/2008 Nishii et al.
Al 5/2009 Dawson et al.
Al 9/2009 Liu et al.

2010/0077165 Al 3/2010 Lu et al.
2012/0066446 Al 3/2012 Sabjan et al.

2012/0124355 Al* 5/2012 Patroccoeee. GOG6F 9/4401
713/2

2012/0233282 Al* 9/2012 Voccio GO6F 9/45558
709/212

2012/0246639 Al* 9/2012 Kashyap GO6F 9/45558
718/1

2013/0007726 Al* 1/2013 Poddar ... GOG6F 8/63
717/175

2013/0304901 Al 11/2013 Malnati
2015/0058839 Al* 2/2015 Madanapalli GO6F 9/45558
718/1

GO6F 9/44505

717/121 OTHER PUBLICATIONS

GO6F 9/44589

707/679 O. H. Alhazmi and Y. K. Malaiya; “Assessing Disaster Recovery
Alternatives: On-site, Colocation or Cloud,” in 23rd IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops;
Dallas, TX, USA; 2012; pp. 19-20.

O. H. Alhazmi and Y. K. Malaiya; “Evaluating Disaster Recovery

GOGF 8/61 Plans Using the Cloud,” Proc. Reliability and Maintainability

718/1 Symposium (RAMS); 2013.
Office Action on U.S. Appl. No. 14/317,722 dated Mar. 11, 2016.

* cited by examiner

US 9,448,834 B2

Sheet 1 of 8

Sep. 20, 2016

U.S. Patent

GAE

g

Aas

m.,i..

A

g bmmO

pom e g

FUNIVIEUN v

HIAHAS
TYNLHIA
TYNHALE

H
gLy

| K

081

19} S

VOl lddY

~1 ND
LR %0

Ty tx.ﬁ&i(:.ism.._.zm) X /w
TS -
T e INSO4SNYYL svi
A1 00 [anvova |
‘ | NOLYONddY |
NETNE L ®30 |
TUNLHIA ,
TYNHILN] ;
y A
o5t Y {ri
Ndo
AYONIA
7 ﬂaﬁ
gg)~
WALSAS dNNOVE

Lo]
| sso s

1Y) bt 0FL

HIAHIS
WOISAHd

{
oLt

M/mmw

R 1]

US 9,448,834 B2

Sheet 2 of 8

Sep. 20, 2016

U.S. Patent

B IV VIIVNS
i

WIISAS |

Mmzmme&mw | diove |
| oW | NOILYOITddY |
| AONYLS L
LA ~
092~ 51z~
| nd9 Nd5
g5z~ -y
HIAYIS
TVOLHIA ME1SAS
TUNHIE dNNavE
mwm.&\ mwm\v

¢ O

dIMovd
NOLLYONddY

I oo
1 NOLYO Y
L »30

muavr 5z}
da e 43
g1 Lozt
INALSAS HIAHIS
A0NOYE WOISAHd
{ {
oLt \eoi
00z

US 9,448,834 B2

Sheet 3 of 8

Sep. 20, 2016

U.S. Patent

¢ "OId

NOLLYONlddY
HLIM 39V INIHOYIN
VNLHIA auﬁuzawm 1004

f 08

nmmbmmm

%Mzw%%mﬁmwa_%
- e 098

o

TH4 20V INIHOVIA 01N
S37i4 NOUYITddY 340153y

2 . gge

NOLLYOddY HLIM
F181LYIINGD WILSAS
ONELVHIH0 HUA 3T

VAL INIHIYIN TYOLEIA
QITIYISNI 344 133735

TR

oy

o

U4 J0YINE INTHIYIN
TYOLEIA EVLIO00H OLN] 831
NI1SAS DNILYHIL0 WHOISNYHL

p;mmm

%Emz B
“ONILYHAO dn D

IH0LS3Y x\a
~ - pzg

S3U4 WILISAS BNIIVYHIdO

00g

w ATIVNGLLJO GNY S3H
NOLLYOIddY Y3AUTS dA0VE

f
018

US 9,448,834 B2

Sheet 4 of 8

Sep. 20, 2016

U.S. Patent

e
tONA
e —
LA 90V~ | =
LR h M‘.mmw%;% J—
CORA L | o e
LI S— evel
Yo o ok o e o e {ON\.V oy P e
S o TN 0Ty
WHOISNYHL | ey
GO ~hmnnng (1 . bt DA
| I o B SR
HINHIS L)r,\z, . | |
ToLdA e d) 1~ Sl
; N 09 oy \ L v
gomsenl .o o i
. < SdMIIYE Nda
WILSAS dNYOVE
NOULYOdY | | 00 e C
I ﬁf 0t
vvvvvv R O@.—V
sgp-1 /143
WILSAS NOILYOI WA . .
087~} AH3AGI3Y H3LSVSIO VOl 007

US 9,448,834 B2

Sheet 5 of 8

Sep. 20, 2016

U.S. Patent

9% 4

< R g

H
H
$
¥
$

-y

SOV IANA

H
§
f
}
-

d (1d3

HIAHIS
TYRLHIA

.

097

INIINIENSYIN

(ONY NOLLYGETIVA
NOLLYHLSIROHO

pd

t,vov.xaux»m&mxmqm

J3.LvarivA
AHVIN

6%

ST L

WILESAS NOLLVAITYA
AYIAQSIY HILSYSIT

- 08%

318Y1004d

SHEMLAS

: JUTRINEREE e

LA P

WALSAS 4IMIOVE

ﬁ.on

SO

S

40vE

13
N Y4

WILSAS
diiove

7
omm,\M

Ado |
3
“666

HIAHIS
TWILEIA

\
~05¢S

00¢

US 9,448,834 B2

Sheet 6 of 8

Sep. 20, 2016

U.S. Patent

9 "OId

069} LON HO SOMLIIW AHIA00TH LI
INIAVH SV QMY THY Samidve

1

3

SANTWA OdH
ONY 0L 0INIWHIL3034d ISNIVDY
NOLLYHOLSIY 3DAHIS 3HOSYIWN |
SILVITVAS INIONT NOILVHISIHIEO |

529" 4

JONIND3S NI GILYOITYA ONY
{31008 34V SIOVIAL AW 318v1008
029" 3

$53004d AHIADOTY INYISNI
SALVILING INIONS NOUYHISIHOHO

7
GI9~ %

SINIHIVIA TYNLHIA 3HL 4N
DNIOYE HO4 30AY3S JRMOVE

i
019~

/ 009

U.S. Patent Sep. 20, 2016 Sheet 7 of 8 US 9,448,834 B2

700,
™ ~710

BACKUP SERVICE FOR BACKING
UP THE VIRTUAL MACHINES

,g ~T15
- ORCHESTRATION ENGINE INITIATES
INSTANT RECOVERY PROCESS

) 720

BOOTABLE MV IMAGES ARE BOOTED
AND VALIDATED N SEQUENCE

'% ~725
FIG. 7 START TIMER 7

v T30

i

ASSIGN RECOVERED VIRTUAL MAGHINE
TG AN {SOLATED NETWORK

T

VIRTUAL MACHINE BOOTED ON .~ >°
ISOLATED NETWORK
¥ 740

EXECUTABLE INJECTED INTG VIRTUAL

_ % 745

ORCHESTRATION ENGINE VALIDATES THAT SPECIFIED
APPLICATION TESTS HAVE RUN CORRECTLY

)

STOP TIMER 70
%_ 755

ORCHESTRATION ENGINE VALIDATES TIMER VALUE
AGAINST PREDETERMINED RTO AN RPQ VALUES

________________ ;

BAGKUPS ARE MARKED ASHAVING L. ~¢(
MET RECOVERY METRICS OR NOT §

US 9,448,834 B2

Sheet 8 of 8

Sep. 20, 2016

U.S. Patent

8 "OId

Ge8
\

INA 91 1597,

A

0€8
AN

INA 213 01 S[00] YA QALIP B JUNOIN

A

GC8
\

o3ewl N A U3 1009

A

028
AN

oSewir
NA ® se a3ewr dnyoeq & pro|

A

CI8
\

~Lpourjipne,, ut oq 0}
901A9p Sunnduwiod 90In0s) Isne))

A

018
\

201A9p Sunndwod
20Jn0s Wolj s dnyjoeq 2A1000Yy

US 9,448,834 B2

1
AUTOMATED TESTING OF PHYSICAL
SERVERS USING A VIRTUAL MACHINE

CROSS-REFERENCE TO RELATED CASES

This application claims priority to U.S. patent application
Ser. No. 14/317,722 filed Jun. 27, 2014, and U.S. patent
application Ser. No. 14/497.846, filed Sep. 26, 2014. This
application also claims priority to U.S. Provisional Appli-
cation No. 62/209,726, filed on Aug. 25, 2015, all of which
are hereby incorporated by reference in their entirety.

TECHNICAL FIELD

The present disclosure relates, in general, to recovery
methods of computing devices. More specifically, the pres-
ent disclosure relates to using virtual machines to backup
computing devices.

BACKGROUND

The following description is provided to assist the under-
standing of the reader. None of the information provided or
references cited is admitted to be prior art. Many individu-
als, businesses, and systems rely on computing devices.
When the computing devices fail, it is often important to
have the computing devices recovered as quickly and reli-
ably as possible. In some instances, a computing device can
be replicated using a virtual machine.

SUMMARY

An illustrative method for validating integrity of a source
server backup includes receiving, at a recovery server, data
indicating a state of a data storage unit associated with a
source server, creating a virtual hard drive image from the
received data, and storing, in memory of the recovery server,
the created virtual hard drive image. The method also
includes booting a virtual machine using the stored hard
drive image and mounting a second drive image to the
virtual machine including tools facilitating access to an
operating system running on the virtual machine by an
application running on the recovery server. The tools are
prevented from being installed in an operating system run-
ning on the source server. The method further includes
automatically detecting, by a recovery application running
on the virtual machine, that the drive includes the tools,
automatically installing, by the recovery application and
without user intervention, the tools in the operating system
running on the virtual machine, and controlling, by the
application running on the recovery server, applications
running on the virtual machine.

An illustrative device for validating integrity of a source
server backup includes a memory device that stores data
indicating a state of a data storage unit associated with a
source server and a processor operatively coupled to the
memory device. The processor creates a virtual hard drive
image from the received data, stores, in the memory device,
the created virtual hard drive image, and boots a virtual
machine using the stored hard drive image. The processor
also mounts a second drive image to the virtual machine
including tools facilitating access to an operating system
running on the virtual machine by a device application. The
tools are prevented from being installed in an operating
system running on the source server. The processor also runs
the device application, automatically detects, via a recovery
application running on the virtual machine, that the drive

10

15

20

25

30

35

40

45

50

55

60

65

2

includes the tools, and automatically installs, via the recov-
ery application and without user intervention, the tools in the
operating system running on the virtual machine. The pro-
cessor further controls, via the device application, applica-
tions running on the virtual machine.

An illustrative non-transitory computer-readable medium
including computer-readable instructions that, upon execu-
tion by a processor, cause a device to perform operations.
The operations include receiving data indicating a state of a
data storage unit associated with a source server, creating a
virtual hard drive image from the received data, and storing,
in memory of the device, the created virtual hard drive
image. The operations also include booting a virtual
machine using the stored hard drive image and mounting a
second drive image to the virtual machine including tools
facilitating access to an operating system running on the
virtual machine by an application running on the recovery
server. The tools are prevented from being installed in an
operating system running on the source server. The opera-
tions also include automatically detecting, via a recovery
application running on the virtual machine, that the drive
includes the tools, automatically installing, via the recovery
application and without user intervention, the tools in the
operating system running on the virtual machine, and con-
trolling, via the application running on the recovery server,
applications running on the virtual machine.

In an illustrative embodiment a backup and restore
method and computer is provided for backing up and
immediate restoring of an application executing on another
computer. The embodiment maintains a virtual machine
image that includes the application and in some embodi-
ments the operating system. The virtual machine image is
created and maintained using a file backup method in which
individual files are received from the other computer execut-
ing the application. In some instances, a virtual server can
immediately boot up using the virtual machine image and
execute the application. The virtual machine image is main-
tained in a ready state updated with the most recently
received files. In such a state, the virtual machine image is
immediately available to recover the application by allowing
a virtual server to boot from the virtual machine image.

In an illustrative embodiment, there is provided a com-
puter implemented method performed by a backup computer
for backing up and restoring an application executing on
another computer to immediately recover the application.
The method includes creating a virtual machine image for
the application where the virtual machine image can be
immediately accessed to implement a recovery of the appli-
cation, receiving files from a computer system executing the
application, transforming the received files to the virtual
machine image format, and updating the virtual machine
image with the transformed received files.

An illustrative embodiment includes a backup computer
that has a memory including computer instructions that
implement the functions of the backup computer when
executed. The backup computer also includes a processor in
communication with the memory. The processor executes
the computer instructions and causes the processor to create
a virtual machine image for the application. The virtual
machine image can be immediately accessed to implement
a recovery of the application. The instructions further cause
the processor to receive files from a computer system
executing the application, transform the received files to the
virtual machine image format, and update the virtual
machine image with the transformed received files.

In an illustrative embodiment, a computer implemented
method is performed by a disaster recovery validation

US 9,448,834 B2

3

computer in communication with a backup appliance. The
method includes transmitting a restore command to the
backup appliance. The restore command includes informa-
tion that identifies a backup for the computer and virtual
machine and causes the backup appliance to restore the
backup to the virtual machine where the backup is main-
tained by the backup appliance. The method further includes
receiving information from the backup appliance used to
measure the time required to boot and bring up the backup
on a virtual machine. The method also includes comparing
the measured time to boot and bring up the backup on the
virtual machine to a predetermined recovery time objective
to determine if the measured recovery time meets the
recovery time objective and transmitting the results of the
comparison to the backup appliance to be stored as an
attribute of the backup. The results include information
identifying the backup.

In an illustrative embodiment, a computer implemented
method is performed by a disaster recovery validation
system. The method includes retrieving information about a
digital backup that is stored on a backup appliance. The
stored digital backup is for a first converged infrastructure
computer platform and is maintained by the backup appli-
ance. The backup appliance is responsible for backing up
and restoring the first converged infrastructure computer
platform. The method also includes transmitting a restore
command to the backup appliance. The command includes
information identitying the stored digital backup and causes
the backup appliance to boot a second converged infrastruc-
ture computer platform from the identified stored digital
backup and to execute the applications stored in the identi-
fied stored digital backup. The method further includes
receiving from the backup appliance information used to
measure the time required to boot the identified stored
digital backup on the second converged infrastructure com-
puter platform, comparing the measured time to boot the
identified stored digital backup to a predetermined recovery
time objective to determine if the identified stored digital
backup meets the predetermined recovery time objective,
and transmitting the results of the comparison to the backup
appliance to be stored as an attribute of the backup wherein
the results include information identifying the backup.

In an illustrative embodiment a disaster recovery valida-
tion system includes a backup appliance operable to execute
a first application. The first application, when executed by
the computer, causes the computer to maintain a backup for
a first converged infrastructure computer platform, receive
backup attribute information associated with the backup for
the first converged infrastructure computer platform. and
associate the received backup attribute information with the
first converged infrastructure computer platform. The sys-
tem also includes a computer operable to communicate with
the backup appliance and operable to execute a second
application. The second application, when executed by the
computer, causes the computer to measure the time required
to boot and bring up the backup on a second converged
infrastructure computer platform, compare the measured
time required to restore the backup to a predetermined
recovery time objective to determine if restoring the backup
meets the recovery time objective, and transmit the results of
the comparison to the backup appliance to be stored as an
attribute of the backup wherein the results include informa-
tion identifying the backup.

An illustrative embodiment includes a computer-imple-
mented method performed by a disaster recovery validation
computer in communication with a backup appliance
responsible for backing up a computer. The method includes

20

25

35

40

45

4

isolating a virtual machine from production networks by
assigning the virtual machine to an isolated network, deter-
mining the time required to boot and bring up a backup for
the computer on the virtual machine where the backup is
maintained by the backup appliance, and comparing the
measured time to boot and bring up the backup to a
predetermined recovery time objective to determine if the
backup meets the recovery time objective. The method also
includes transmitting the results of the comparison to the
backup appliance to be stored as an attribute of the backup.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the
illustrative aspects, embodiments, and features described
above, further aspects, embodiments, and features will
become apparent by reference to the following drawings and
the detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a backup system in accor-
dance with an illustrative embodiment.

FIG. 2 is a block diagram of a remote backup system in
accordance with an illustrative embodiment.

FIG. 3 is a flow chart of a method of backing up an
application in accordance with an illustrative embodiment.

FIG. 4 is a block diagram of a backup verification system
in accordance with an illustrative embodiment.

FIG. 5 is a block diagram of a remote backup verification
system in accordance with an illustrative embodiment.

FIG. 6 is a flow chart of a method of verifying backups in
accordance with an illustrative embodiment.

FIG. 7 is a flow chart of a method of verifying backups in
accordance with an illustrative embodiment.

FIG. 8 is a flow diagram of a method to test a backup of
a physical device as a virtual machine in accordance with an
illustrative embodiment.

The foregoing and other features of the present disclosure
will become apparent from the following description and
appended claims, taken in conjunction with the accompa-
nying drawings. Understanding that these drawings depict
only several embodiments in accordance with the disclosure
and are, therefore, not to be considered limiting of its scope,
the disclosure will be described with additional specificity
and detail through use of the accompanying drawings.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a part hereof. In
the drawings, similar symbols typically identify similar
components, unless context dictates otherwise. The illustra-
tive embodiments described in the detailed description,
drawings, and claims are not meant to be limiting. Other
embodiments may be utilized, and other changes may be
made, without departing from the spirit or scope of the
subject matter presented here. It will be readily understood
that the aspects of the present disclosure, as generally
described herein, and illustrated in the figures, can be
arranged, substituted, combined, and designed in a wide
variety of different configurations, all of which are explicitly
contemplated and make part of this disclosure.

In many instances, some level of disaster recovery for a
computer or computer system is implemented. A disaster
recovery plan may include one or more techniques for
backing up part or all of the data, software, and information
for operating a computer or a computer system. In many
instances, the more critical that the application executed by

US 9,448,834 B2

5

the computer is, the higher the level of disaster recovery
implemented by the computer is.

Computer backup systems may suitably provide function-
ality to backup and restore individual server computers, both
at the physical and virtual level, to provide the ability to
recover the server, for example, in the event of a disaster that
renders the server unusable. Computer backup systems can
recover the computer for any suitable reason. Such backups
are often referred to as bare-metal backups because a new
server can be restored from a blank or “bare metal” state
back to the state of the original server, including its oper-
ating system and applications. In some instances, such
backups are sometimes referred to as immediate recovery
because, during the recovery process, an entire disk image is
written to a disk. Once the disk image is stored, a server
computer can boot from the disk.

Another illustrative method of backing up and recovering
a server is known as a file level application backup. With this
method, an initial full backup is made, and incremental
updates of files are made as files are updated or created in the
server being backed up. Such a method generally reduces the
backup time because files that have not changed are not
updated after the first update. It takes longer to recover a
server using a file level application backup than when using
a bare-metal backup, however during the backup phase, the
bare-metal backup requires more computer resources than
the file level application backup.

‘When one or more computer servers are needed to support
software functions, the computer servers may be imple-
mented using a converged infrastructure computer solution
that is provided by a number of computer hardware vendors.
A converged infrastructure computer solution includes an
integrated chassis with one or more computer servers, one or
more network switches, and disk storage. In addition to
providing the physical components in the same chassis, the
solution may also provide an integrated management com-
ponent that manages the physical and logical configurations
of the components in the chassis. Examples of such con-
verged infrastructure platforms include Unified Computing
System (UCS) provided by Cisco Systems, Inc., PowerEdge
VRTX provided by Dell Inc., and PureSystems provided by
International Business Machines Corp. (IBM).

Having a backup for a system does not necessarily satisfy
all the metrics in a disaster recovery plan. Disaster recovery
plans may suitably specify metrics such as a recovery time
objective (RTO) and a recovery point objective (RPO). The
disaster recovery plan metrics may suitably include a recov-
ery time objective (RTO) that specifies the maximum
amount of time required to recover both data and access to
the data after a failure and a recovery point objective (RPO)
that specifies the maximum age of the backed up data.
Determining if a backup meets all of the requirements of the
disaster recovery plan is often important to being able to
manage disaster recovery for a computer system.

As described in greater detail below, in some embodi-
ments, backups of a computer device can be tested before
the computing device is restored (e.g., while the computer
device is working properly). In some embodiments, testing
the backups includes running a virtual machine to simulate
restoring the computer device. Testing can include, in some
embodiments, operating applications in the operating system
environment of the virtual machine (that is simulating the
computing device). An application running on a backup
server operates the applications of the virtual machine. For
the application on the backup server to have access to the
operating system environment of the virtual machine, in
many instances, tools (or instructions, scripts, etc.) are

10

15

20

25

30

35

40

45

50

55

60

65

6

installed within the virtual machine. But, in many cases, the
tools are prevented from being installed on an operating
system that is running on a physical machine (e.g., not a
virtual machine). Thus, in some instances, a backup of a
physical machine cannot be tested as a virtual machine
because the backup of the physical machine (and, therefore,
the virtual machine running the backup) does not have the
tools that allow access to the operating system.

In some embodiments, a backup agent (e.g., a script) is
installed on the physical computing device that can facilitate
installation of the tools that allows access to a virtual
machine’s operating system environment. Accordingly,
while the tools may not be installed on the physical com-
puter, when a backup of the physical computer is replicated
using a virtual machine, the tools can be installed on the
virtual machine after the virtual machine is booted up to
allow access to the virtual machine.

FIG. 1 is a block diagram of a backup system in accor-
dance with an illustrative embodiment. In alternative
embodiments, additional, fewer, and/or different elements
may be used. A computer system 100 includes a backup
system 110 in communication with a physical server 105 and
an external virtual server 115.

The backup system 110 includes a central processing unit
(CPU) 130 in communication with: a memory 135, a first
storage device 140, a second storage device 145, and an
internal virtual server 150. The first storage device 140 and
the second storage device 145 may suitably include multiple
non-volatile storage devices such as disk drives or solid state
drives or a combination thereof. The CPU 130 executes
software that is stored in the memory 135 which causes the
CPU 130 to perform the functions of the backup system 110.
The CPU 130 causes operating system (OS) and application
backup data received from the physical server 105 to be
transformed into an OS and Application VM Image stored
on the second storage device 145. The internal virtual server
150 includes a CPU 155 which executes software to create
a virtual machine (VM) 160. The CPU 130 may suitably
cause an OS and Application VM Image stored on the
second storage device 145 to be loaded into the VM 160 and
executed by the internal virtual server 150. The CPU 130
may suitably cause an OS and Application VM Image stored
on the second storage device 145 to be loaded into a virtual
machine (VM) 175 of the external virtual server 115. A CPU
170 in the external virtual server 115 implements the VM
175.

The physical server 105 includes a central processing unit
(CPU) 120 that executes one or more applications and an
operating system that reside on a storage device 125. The
storage device 125 may suitably include multiple non-
volatile storage devices such as disk drives, solid state
drives, or a combination thereof. The backup system 110
initiates a file-based (non-image based) backup of the physi-
cal server 105 at a specific point in time. In some embodi-
ments, the backup either includes only the files associated
with the application, or all files on the server including both
the application and the operating system. The files are
received by the backup system 110. In an illustrative
embodiment, the files are converted to a backup format and
stored on the first storage device 140.

FIG. 2 is a block diagram of a remote backup system in
accordance with an illustrative embodiment. In alternative
embodiments, additional, fewer, and/or different elements
may be used. In the embodiment illustrated in FIG. 2,
application files reside and execute on the physical server
105 and are backed up to the backup system 110. The backup
system 110 communicates over a network 205 to a remote

US 9,448,834 B2

7

backup system 220 which is in communication with an
external virtual server 225. The network 205 may suitably
include combinations of private and public networks where
one of the public networks may include the Internet.

The embodiment illustrated in FIG. 2 provides the ability
to perform an immediate recovery of the application on an
external virtual server 225 remotely located from the physi-
cal server 105. In some embodiments, the immediate recov-
ery process transfers a minimal amount of data across the
network 205. To minimize the network traffic, only the
backup data for the application data is transferred across the
network 205 to the remote backup system 220 and stored on
a storage device 215. To be able to perform an immediate
recovery, the replicated backup files on the disk 215 are
transferred into a standby virtual machine (VM) 260 on the
external virtual server 225. The standby virtual machine 260
has a version of an operating system that is compatible with
the application being restored. A CPU 255 on the external
virtual server 225 executes software that creates the standby
VM 260 and communicates with the remote backup system
220.

In an embodiment of the present invention, an initial
bootable image is created to boot the VM 160. In some
embodiments, the initial bootable image includes custom
software that is not part of the software that executes or is
stored on the physical server 105. The custom software is
executed during the recovery process to setup and initialize
a file system and to restore the backed up files to the file
system. When a recovery of the physical server 105 is
required, the VM 160 is placed in “restore mode.” In the
“restore mode,” the VM 160 boots the initial bootable image
and executes the custom software from the image. The
custom software creates a partition on the boot drive of the
VM 160 and initializes it. In an illustrative embodiment, the
boot drive for the internal virtual server is the second storage
device 145. The custom software requests the backed-up
files for the physical server 105 and places the backed-up
files in the created partition. The backed-up files may
suitably include application files and, in some embodiments,
operating system files. The VM 160 is switched to the “live
mode.” In some embodiments, the VM 160 is switched to
the “live mode” after the backed-up files are stored in the
partition. In the “live mode,” the VM 160 reboots off of the
created partition executing (at least some of) the backed up
files. Executing (at least some of) the backed up files causes
the VM 160 to perform the operations that were executing
on the physical server 105.

In some embodiments, an audit of the backup files is
performed to validate the backup files. A snapshot is taken
of the created partition on the second storage device 145. In
some embodiments, the snapshot is taken when an audit is
being performed (e.g., upon initialization of the audit). The
VM 160 switches from the “restore mode” to the “audit
mode.” In some embodiments, the VM 160 switches to the
“audit mode” after the snapshot has been taken. In the “audit
mode,” the VM 160 reboots using files from the snapshot of
the created partition, but halts operation after the application
has been successfully started. Recovery times are deter-
mined and the snapshot and the data stored on VM 160 are
deleted.

In an illustrative embodiment, the recovery method
described above (or a portion thereof) can be performed by
the internal virtual server 150 and/or the external virtual
server 115. The virtual server 115 and/or the virtual server
150 can perform the recovery directly or by using the VM
160 and/or the VM 175 of each virtual server 115 and virtual
server 150. In embodiments in which the external virtual

10

15

20

25

30

35

40

45

50

55

60

65

8

server 115 is used to perform the recovery of the physical
server 105, the partition can either be created on a storage
device local to the external virtual server 115 or on the
second storage device 145. In alternative embodiments, any
suitable configuration may be used.

FIG. 3 is a flow chart of a method of backing up an
application in accordance with an illustrative embodiment.
In alternative embodiments, additional, fewer, and/or differ-
ent elements may be used. Also, the use of a flow diagram
and/or arrows is not meant to be limiting with respect to the
order or flow of operations. The method performs an imme-
diate recovery of the application files on the physical server
105 by executing backup application files on the virtual
machine 160 or the virtual machine 175. The method
accesses the application VM image from the second storage
device 145 on the backup system 110 and transfers the data
to either the virtual machine 160 of the internal virtual server
150 or to the virtual machine 175 of the external virtual
server 115 for execution.

Any suitable method can be used for converting a physi-
cal server into a virtual server, which can be referred to as
physical to virtual (P2V). One such method is where a
bootable disk image for the virtual server is used as a starting
point, and the files from the backup or application are then
transferred into that bootable partition or image file. This or
a similar technique can be used to transform the application
backup files stored on the first storage device 140 into a
bootable virtual machine image stored on the second storage
device 145.

In some embodiments, the goal of various embodiments
is to present a recovered running application as quickly as
possible. Depending upon the goals defined for the system,
it may be desired to have the recovered application running
on the identical operating system configuration as the source
machine, or to have the application running on a compatible
version of the operating system.

At step 310, the backup system 110 receives application
files and, optionally, operating system files from the physical
server 105. To prepare a virtual machine image for recovery,
a determination is made in step 320 whether to restore the
original operating system (or use a compatible operating
system). If the result of step 320 is yes, then, in step 330, the
operating system files are transformed into a bootable virtual
machine image. If the result of step 320 is no, then, in step
340, a pre-existing bootable virtual machine image is chosen
which includes a compatible operating system that supports
execution of the application. In step 350, the application files
are restored to a VM image stored on the second storage
device 145. In some embodiments, the VM image is ready
to boot for immediate recovery after step 350.

In step 360, a check is made to determine if the physical
server 105 has failed, is not available for normal use, and/or
is to otherwise be recovered. If the result of step 360 is yes,
control passes to step 370 for immediate recovery. In step
360, the VM image is transferred into the VM 160 and the
VM image is executed. In some embodiments, the VM
image is transferred to the VM 175 of the external virtual
server 115 or the VM 260 of the remote external virtual
server 225. If the result of operation 360 is no, control passes
back to step 310 and the backup system 110 continues to
receive updates to the application files.

FIG. 4 is a block diagram of a backup verification system
in accordance with an illustrative embodiment. In alternative
embodiments, additional, fewer, and/or different elements
may be used. A system 400 includes a first virtual server 410,
a second virtual server 460, a backup system 430, and a
disaster recovery validation system 480. The first virtual

US 9,448,834 B2

9

server 410 and the second virtual server 460 are physical
computer systems that implement one or more virtual
machines 420 and virtual machines 470, respectively. Each
virtual machine can load and execute an operating system
and applications.

The backup system 430, also known as a backup appli-
ance, is used to backup the virtual machines 420 of the first
virtual server 410. To backup each of the virtual machines,
a backup is created for each virtual machine. A backup,
sometimes referred to as a digital backup, includes infor-
mation for restoring the operations of a virtual machine on
another virtual machine. In some embodiments, the backup
can include information for restoring operations of a physi-
cal computer on a virtual machine. In some embodiments,
the backup can include information for restoring the opera-
tions of the virtual machine on another virtual machine. In
an illustrative embodiment, the backup system 430 receives
copies of file data over a first communication path 408 from
the first virtual server 410 for each virtual machine 420 and
stores the file data in a local storage 440. The backup system
430 transforms the file data and stores it in a bootable VM
image 445 associated with one of the virtual machines 420.
In an illustrative embodiment, the backup system 430 is one
or more of the backup systems described in provisional U.S.
Patent Application Ser. No. 61/968,137, filed on Mar. 20,
2014, which has the same assignee as the present application
and is incorporated herein by reference in its entirety.

In some embodiments, the backup system 430 creates
backups for virtual or physical machines and restores the
backups as standby virtual or physical machines. In an
illustrative embodiment, the restoring function is performed
when an operating virtual or physical machine fails or is
performed as a test to confirm that a backup can actually
restore the operations of a virtual or physical machine. In
some embodiments, testing a backup includes measuring
restoration metrics to determine if the backup meets prede-
termined restoration values. The predetermined values can
include, for example, maximum time to restore the backup.
The backup system 430 starts a computer restore process
after receiving a restore command that specifies which
backup to use and a virtual or physical machine where the
backup is to be restored. In some embodiments, the restore
command may further include a script that is to be executed
after the restore is complete. The script may be used to test
the operation of the restored backup to confirm it is oper-
ating properly.

The second virtual server 460 includes a number of virtual
machines (VM) 470, and at least one of the VMs 470 is used
to test the restoration of a bootable VM image backup 445
and, in some embodiments, make measurements during the
test. The second virtual server 460 communicates with the
backup system 430 over a second communications path 406.
Tests performed on the second virtual server 460 are con-
trolled by an application 490 executing on the disaster
recovery validation system 480. The application 490 is
stored in a local storage that is part of the disaster recovery
validation system 480. The local storage is also used to store
data and information generated or used by the application
490. The disaster recovery validation system 480 uses a third
communications path 404 to communicate with the second
virtual server 460. The disaster recovery validation system
480 uses a fourth communications path 402 to communicate
with the backup system 430.

The disaster recovery validation system 480 includes a
computer with a CPU 485 that executes the application 490,
which controls the features and functions of the disaster
recovery validation system 480. In some embodiments, the

10

15

20

25

30

35

40

45

50

55

60

65

10

CPU 485 can be the same CPU as the CPU 435. In some
embodiments, the disaster recovery validation system 480 is
implemented as part of the backup system 430. The appli-
cation 490 can test one or more (e.g., all) of the bootable VM
images 445. Testing of the VM images 445 can be performed
in any suitable manner. For example, the testing of the VM
images 445 can be scheduled (e.g., periodic). In another
example, testing of the VM images 445 can be in response
to a certain number of VM images 445 being stored, an
amount of VM images 445 stored (e.g., size of the stored
VM images 445), etc.

Testing of the bootable VM images 445 can include
measuring a number of disaster recovery metrics associated
with each of the bootable VM images 445. For example, for
each of the bootable VM images 445, there is a set of
predetermined metric values that are compared against mea-
sured values to determine if a bootable VM image 445 meets
requirements for a disaster recovery plan. The disaster
recovery metrics can include the recovery time objective
(RTO) and the recovery point objective (RPO). An RTO can
include, for example, the amount of time it takes to restore
a computing device after it is determined that the computing
device is to be recovered. In one example, an RTO is 30
minutes. Thus, after a computing device fails, it should take
30 minutes or less to recover the computing device. Put
another way, the computing device (or its equivalent) should
be available for use in no more than 30 minutes after the
computing device fails. In alternative embodiments, any
suitable RTO may be used. An RPO can be, for example, the
amount of time (or data) lost when a computing device is
recovered. For example, the RPO can be the maximum
amount of time since the most recent backup. In an illus-
trative example, an RPO can be 8 hours. Thus, when a
computing device fails, the backup of the computing device
should replicate the state of the computing device from no
greater than 8 hours before the computing device failed. In
alternative embodiments, any suitable RPO can be used.

In some embodiments, the results of the testing are sent to
the backup system 430 to be stored as attributes of the
associated bootable VM image 445. The backup system 430
may suitably send notifications when a bootable VM image
445 fails to meet the requirements of a disaster recovery
plan.

FIG. 5 is a block diagram of a remote backup verification
system in accordance with an illustrative embodiment. In
alternative embodiments, additional, fewer, and/or different
elements may be used. A wide area network 510 is used to
communicate with one or more remote backup systems that
are located away from the main backup system 430. The
wide area network 510 may suitably include a private
network, a leased line network, the Internet, etc., or any
combination thereof.

In an illustrative embodiment, the remote backup system
520 includes a computer with a CPU 525 and local data
storage to store backup files 530. The remote backup system
520 includes an operating system and application software
that controls the features and functions of the remote backup
system 520. The remote backup system 520 communicates
with a virtual server 550. The virtual server 550 includes a
computer that supports multiple virtual machines 560 which
are backed up by the remote backup system 520. The remote
backup system 520 sends files over the wide area network
510 to the main backup system 430 where the bootable VM
images 445 are maintained. The VM images 445 can be used
to recover one or more virtual machines 560 on a virtual
machine 470 of the virtual server 460.

US 9,448,834 B2

11

FIGS. 4 and 5 illustrate the disaster recovery validation
system 480 running on its own CPU 485 as its own software.
In alternative embodiments, any suitable arrangement can be
used. For example, the disaster recovery validation system
480 can be integrated into the backup system 430. In another
example, the CPU 485 can be a virtual machine running on
the backup system 430 or any suitable computing device.
Although the backup system 430, the disaster recovery
validation system 480, and the virtual server 460 are illus-
trated as separate devices, any combination of the compo-
nents can be implemented in a separate physical system, a
separate virtual machine, or can be running alongside one
another.

FIG. 6 is a flow chart of a method of verifying backups in
accordance with an illustrative embodiment. In alternative
embodiments, additional, fewer, and/or different elements
may be used. Also, the use of a flow diagram and/or arrows
is not meant to be limiting with respect to the order or flow
of operations. In some embodiments, at step 610, a backup
service continuously backs up the virtual machine 420
and/or the virtual machine 560. In alternative embodiments,
the backup service periodically backs up the virtual machine
420 and/or the virtual machine 560. In other embodiments,
any suitable method or frequency may be used to backup
virtual machines. The virtual machines may be local,
remote, or a combination thereof. In some embodiments, the
backup service creates a bootable VM image 445 for each
virtual machine that is backed up.

At step 615, the application 490 initiates the instant
recovery process to test the bootable VM images 445. In
some embodiments, the application 490 controls the disaster
recovery validation system 480. Periodically, the application
490 will test each bootable VM image 445 to determine if
the VM image 445 meets the requirements of a disaster
recovery plan, which may include predetermined metric
values.

At step 620, during the periodic testing of each bootable
VM image 445, the application 490 starts one or more timers
to measure the time for certain events associated with the
instant recovery process to occur. In alternative embodi-
ments, any suitable method for determining whether an RTO
and/or an RPO are met. For example, the application 490
measures the time it takes to load and bring up a bootable
VM image 445. In some embodiments, as part of the testing,
each bootable VM image 445 is loaded into a virtual
machine 470, the virtual machine 470 is configured to
execute the bootable VM image 445, and the bootable VM
image 445 is executed. Program execution continues until
the data and services provided by the bootable VM image
445 are restored and available for use.

As described in step 625, execution of the virtual machine
470 is halted, final system measurements are recorded, the
virtual machine 470 is deleted, and test results are produced.
The recorded measurements can be compared with prede-
termined values that are part of a disaster recovery plan to
determine if each bootable VM image 445 meets plan
requirements. In an illustrative embodiment, the disaster
recovery plan includes the RTO and RPO metrics. The
application 490 determines the actual values for the metrics
for each bootable VM image 445 and compares the actual
values to the predetermined metric values stored in the plan.
The comparison determines if the bootable VM images 445
have met the requirements in the disaster recovery plan.

In step 630, the results of the test are transmitted to the
backup system 430 and stored as an attribute of the bootable
VM image 445. The bootable VM image 445 is marked as
having met or not met the requirements of the disaster

20

30

35

40

45

50

55

12

recovery plan. Each of the bootable VM images 445 can be
tested to determine if the respective VM image 445 meet the
requirements of the disaster recovery plan.

FIG. 7 is a flow chart of a method of verifying backups in
accordance with an illustrative embodiment. In alternative
embodiments, additional, fewer, and/or different elements
may be used. Also, the use of a flow diagram and/or arrows
is not meant to be limiting with respect to the order or flow
of operations. In some embodiments, one or more of the
virtual machines 470 that are used to test the bootable VM
images 445 can be dynamically assigned to use an isolated
network so that information generated by applications
executing on the virtual machines 470 during the test cannot
escape onto a production network and cause problems. In
some embodiments, an isolated network is a network in
which Internet traffic cannot escape on to a production or
public network. Computers on an isolated network can use
IP addresses that are used by computers on a production or
public network without creating a conflict or other network
issue. If a recovery in accordance with an alternative
embodiment is made, the virtual machines 470 can be
assigned to use a production network so that the applications
can access whatever network resources are required (or
useful) or provide whatever resources are needed (or useful).

At step 710, a backup service backs up the virtual
machine 420 and/or the virtual machine 560. In some
embodiments, at step 410, a backup service continuously
backs up the virtual machine 420 and/or the virtual machine
560. In alternative embodiments, the backup service peri-
odically backs up the virtual machine 420 and/or the virtual
machine 560. In other embodiments, any suitable method or
frequency may be used to backup virtual machines. The
virtual machines may be local or remote or a combination
thereof. In an illustrative embodiment, the backup service
creates a bootable VM image 445 for each virtual machine
that is backed up. In alternative embodiments, the backup
service creates a bootable VM image 445 for any suitable
number of the backed-up virtual machines.

At step 715, the application 490 initiates the instant
recovery process to test the bootable VM images 445. In an
illustrative embodiment, the application 490 is the applica-
tion that controls the disaster recovery validation system
480. The application 490 tests each bootable VM image 445
to determine if it meets the requirements of a disaster
recovery plan, which can include predefined metric values.
The bootable VM images 445 can be tested at any suitable
frequency or for any suitable reason.

At step 720, the application 490 starts one or more timers
to measure the time it takes for certain events associated
with the instant recovery process to occur. The one or more
timers can be started during the testing of each bootable VM
image 445. In alternative embodiments, any suitable method
can be used for determining whether the VM images 445 are
suitable to meet the requirements of the disaster recovery
plan. For example, the application 490 can measure the time
to load and bring up a bootable VM image 445. In some
embodiments, as part of the testing, each bootable VM
image 445 is loaded into a virtual machine 470, the virtual
machine 470 is configured to execute the bootable VM
image 445, and the bootable VM image 445 is executed.
Program execution can continue until the data and services
provided by the bootable VM image 445 are restored,
available for use, and/or tested to assure that the data and
services (and/or the VM image 445) are operating properly.

In step 725, a timer is started. In some embodiments, step
425 includes resetting (e.g., reinitializing) the application
490. The timer can be used to measure and determine the

US 9,448,834 B2

13

recovery time for the recovered virtual machines. In some
embodiments, multiple timers are used to measure different
aspects of the recovery process. In step 730, the recovered
virtual machine is assigned to an isolated network. In some
embodiments, using an isolated network allows the recov-
ered virtual machine to use the same IP addresses as the
production virtual machines without causing problems.

In step 735, the application 490 issues a command to the
virtual server 460 to boot one of the virtual machines 470.
In step 740, the application 490 injects an executable script
into the booted virtual machine 470. In some embodiments,
the script runs one or more tests specific to an application to
determine if a feature or service is available for use. For
example, the script may cause a database query to execute
and then determine if the results are correct. In another
example, the script may test a service such as an email server
to determine if the service is available for use.

In step 745, the application 490 validates that the outputs
of the tests are correct to determine if the applications are
functioning properly. In step 750, the application 490 stops
the timer and uses a value read from the timer to determine
the recovery time for the bootable VM image 445.

In step 755, the application 490 halts execution of the
virtual machines 470, records final system measurements,
deletes the virtual machines 470, and produces test results.
The recorded measurements can be compared with prede-
termined values that are part of a disaster recovery plan to
determine if each bootable VM image 445 meets plan
requirements. In an illustrative embodiment, the disaster
recovery plan includes RTO and RPO metrics. The appli-
cation 490 determines the actual values for these metrics for
each bootable VM image 445 and compares the actual
values to the predetermined metric values stored in the plan.
The comparison determines if a bootable VM image 445 has
met the requirements in the disaster recovery plan.

In step 760, the results of the test are transmitted to the
backup system 430 and stored as an attribute of the bootable
VM image 445. In some embodiments, the bootable VM
image 445 is marked as having met or not met the require-
ments of the disaster recovery plan. Each of the bootable
VM images 445 are tested to determine if they meet the
requirements of the disaster recovery plan.

As discussed above with reference to FIGS. 4-7, VMs 420
of a first virtual server 410 (or VMs 560 of a second virtual
server 550) can be backed up. The backups of the VMs 420
can be booted up and tested using another virtual server,
such as VMs 470. In some embodiments, the VMs 470 can
be tested to verify that the backup of the VMs 420 is
operational. For example, within the operating environment
of the VMs 470, applications can be opened and commands
can be executed. In an example, an email application can be
started and one or more emails can be opened within the
email application. Having the emails open properly is one
indication that the backup of the VMs 420 (that is running
on the VMs 470) is operating properly and can be relied
upon as a functional backup if the VMs 420 is to be
recovered. In some embodiments, verifying functioning of a
virtual machine can include step 740, discussed above.

In some embodiments, software tools running on the VMs
470 can allow another application, such as application 490,
to operate within the operating system of the VMs 470.
Using the example above, the application 490 can cause the
email program to be started and can cause emails to be
opened. The application 490 can also check for proper
operation of the VMs 470 (e.g., by checking the emails that
are opened, by ensuring that the VMs 470 has not crashed or
slowed to unacceptable levels, etc.).

10

15

20

25

30

35

40

45

50

55

60

65

14

In some embodiments, without the proper software tools,
the application 490 cannot access the operating system
environment of the VMs 470. In most instances, preventing
access to the operating system environment by another
software application (e.g., application 490) is a security
function. For example, by disallowing access by another
software application and by only allowing access to the VMs
470 via a user input (e.g., a keyboard, a mouse, etc.),
unauthorized access to the VMs 470 from a remote user or
program (e.g., a hacker) is prevented. In some instances, the
prevention of access of the VMs 470 by the application 490
is a default security feature of the operating system. In most
instances, using a different operating system (e.g., one that
allows access of the VMs 470 via the application 490) is not
a practical solution. That is, in many cases, the operating
system is chosen for other reasons. Thus, by installing the
proper software tools to the VMs 470, the application 490 is
able to more fully test the operation of the VMs 470.

In the embodiments discussed above with regard to FIGS.
4-7, the proper software tools can be installed on the first
VMs 420. Thus, when the VMs 420 are backed up and the
backups are booted as VMs 470, the VMs 470 already have
the proper software tools installed that allow access by the
application 490. The first virtual server 410, the VMs 420,
the second virtual server 460, and the VMs 465 can use any
suitable protocols. For example, VMWare, Inc. provides
software and architecture to run virtual machines. VMWare
virtual machines can run software tools such as VMWare
Tools that allow access to a VMWare virtual machine by a
software application outside of the virtual machine (e.g.,
application 490).

Many such software tools (e.g., VMWare Tools) cannot be
installed on an operating system that is running on a physical
device (e.g., not a virtual machine). Preventing installation
of the software tools is primarily a security feature. For
example, prevention of installation of software tools that
allow remote access prohibits unauthorized users (e.g., soft-
ware applications) from controlling a computer (and, for
example, spreading the unauthorized control, such as via a
virus).

Accordingly, if a backup of a physical device (which
cannot have the software tools installed for security reasons)
is booted up as a virtual machine (e.g., as one of VMs 470),
the application 490 will not have access to the virtual
machine to perform its tests, without installing the software
tools on the virtual machine. Further, as discussed above,
without the tools installed, remote access by a software
application (e.g., application 490) is prohibited for security
reasons. Thus, a software application cannot be automati-
cally run to install the software tools on the virtual machine
that would allow access by the software application.

In some embodiments, a user can access the virtual
machine via user input (e.g., a keyboard, a mouse, etc.) and
install the tools, thereby giving the application 490 access to
the virtual machine. However, in most instances, it is cum-
bersome, time consuming, and expensive for a user to install
the tools in the virtual machine each time a backup of a
physical computer is to be tested.

FIG. 8 is a flow diagram of a method to test a backup of
a physical device as a virtual machine in accordance with an
illustrative embodiment. In alternative embodiments, addi-
tional, fewer, and/or different elements may be used. Also,
the use of a flow diagram and/or arrows is not meant to be
limiting with respect to the order or flow of operations.

In step 810, backup files are received from the source
computing device. In an illustrative embodiment, the source
computing device is a physical computing device. In some

US 9,448,834 B2

15

embodiments, the backup files can be received by a backup
system such as backup system 430. As discussed above with
reference to FIGS. 1-3, in some embodiments, the backup
files are incremental backup files. The incremental backup
files can indicate what data from the source computing
device has changed since the last backup file was receive. In
some embodiments, the backup file can be indicative of one
or more hard drives of the source computing device. In
alternative embodiments, the backup files can be indicative
of all files of the physical computing device.

In an illustrative embodiment, the source computing
device has installed on it a backup agent. In some embodi-
ments, the backup agent is a software application (or script)
that monitors the source computing device and transmits to
the backup system the backup files. In an illustrative
embodiment, the backup agent can determine what is
included in the backup files. In some embodiments, the
backup agent can automatically check for software tools that
allow access to the operating system of a virtual machine by
a remote application (e.g., application 490). For example,
for every drive (e.g., storage device, flash memory device,
compact disk (CD) drive, etc.) that is mounted to the
computing device, the backup agent can determine if the
software tools are included on the drive.

When the backup agent finds the software tools, the
backup agent can cause the software tools to be installed on
the operating system, if possible. For example, if a flash
drive is connected to a universal serial bus (USB) connec-
tion of the source computing device, the backup agent can
search the contents of the flash drive for the software tools.
However, in most instances, the software tools cannot be
installed on a physical computer, so if the source computing
device is a physical computer (e.g., not a virtual machine),
then the software tools are not installed. However, if the
source computing device (or a backup of the source com-
puting device) is run as a virtual machine, the backup agent
can cause, without intervention by a user, the software tools
to be installed on the source computing device (or the
backup of the source computing device being run an a virtual
machine).

In step 815, the source computing device is caused to
enter an “audit mode.” In some embodiments, when the
source computing device is in the audit mode, the source
computing device does not transmit backup files. For
example, in some embodiments, while in the audit mode, the
source computing device monitors the changes to the source
computing device and, when the computing device returns
to normal operation (e.g., not audit mode), the computing
device can transmit a backup file that contains changes to the
source computing device while the source computing device
was in audit mode. In some embodiments, the step 815 is not
performed. In such embodiments, the backup system can
continue to maintain backup files received from the source
computing device.

In step 820, a backup image of the source computing
device is loaded as a virtual machine image. That is, a copy
of, for example, a hard drive of the source computing device
is stored as a virtual hard drive for a virtual machine. The
virtual machine can be, for example, one of VMs 470. In
step 825, the virtual machine image is used to boot up a
virtual machine. Thus, the virtual machine is a backup of the
source computer. In embodiments in which the source
computer is a physical machine, the virtual machine does not
have installed on it the software tools that allow remote
access by a software application (e.g., application 490). But,
because the source computer has installed the backup agent,
the virtual machine also has installed the backup agent.

10

15

20

25

30

35

40

45

50

55

60

65

16

Thus, once the virtual machine is booted up, the backup
agent running on the virtual machine is checking (e.g.,
attached drives) for the software tools.

In an illustrative embodiment, the virtual machine is
polled to determine when the virtual machine is booted. In
step 830, a drive with the software tools is mounted to the
virtual machine. The drive can be any suitable virtual drive,
such as a virtual hard drive, a virtual flash drive, a virtual CD
drive, etc. The backup agent, running on the virtual machine,
can search the drive for the software tools. When the backup
agent finds the software tools on the drive, the backup agent
can automatically install the software tools on the virtual
machine. In some embodiments, the software tools are
installed on the virtual machine without user intervention.
Once the software tools are installed on the virtual machine,
a software application (e.g., application 490 running on the
backup system) can access the operating system of the
virtual machine.

In step 835, the virtual machine is tested. The virtual
machine can be tested, for example, by application 490 to
verify that the virtual machine is operating properly. Testing
the virtual machine can use any suitable method. For
example, testing the virtual machine can include operating
applications within the operating system environment of the
virtual machine.

Thus, the method 800 allows a backup of a physical
computer to be tested using a virtual machine, even though
appropriate tools for testing the virtual machine cannot be
installed on the operating system when the operating system
is running on the physical machine. In some embodiments,
method 800 can be performed without intervention from a
user. After the method 800 is performed, the source com-
puting device can be taken out of audit mode. For example,
the source computing device can be configured to continue
to provide backup files to the backup system. If the backup
of the source computer passed the tests (which can be based
on RTOs and/or RPOs), the backup can be stored as an
acceptable backup.

In an illustrative embodiment, any of the operations
described herein can be implemented at least in part as
computer-readable instructions stored on a computer-read-
able memory. Upon execution of the computer-readable
instructions by a processor, the computer-readable instruc-
tions can cause a node to perform the operations.

The herein described subject matter sometimes illustrates
different components contained within, or connected with,
different other components. It is to be understood that such
depicted architectures are merely exemplary, and that in fact
many other architectures can be implemented which achieve
the same functionality. In a conceptual sense, any arrange-
ment of components to achieve the same functionality is
effectively “associated” such that the desired functionality is
achieved. Hence, any two components herein combined to
achieve a particular functionality can be seen as “associated
with” each other such that the desired functionality is
achieved, irrespective of architectures or intermedial com-
ponents. Likewise, any two components so associated can
also be viewed as being “operably connected,” or “operably
coupled,” to each other to achieve the desired functionality,
and any two components capable of being so associated can
also be viewed as being “operably couplable,” to each other
to achieve the desired functionality. Specific examples of
operably couplable include but are not limited to physically
mateable and/or physically interacting components and/or
wirelessly interactable and/or wirelessly interacting compo-
nents and/or logically interacting and/or logically inter-
actable components.

US 9,448,834 B2

17

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can
translate from the plural to the singular and/or from the
singular to the plural as is appropriate to the context and/or
application. The various singular/plural permutations may
be expressly set forth herein for sake of clarity.

It will be understood by those within the art that, in
general, terms used herein, and especially in the appended
claims (e.g., bodies of the appended claims) are generally
intended as “open” terms (e.g., the term “including” should
be interpreted as “including but not limited to,” the term
“having” should be interpreted as “having at least,” the term
“includes” should be interpreted as “Includes but is not
limited to,” etc.). It will be further understood by those
within the art that if a specific number of an introduced claim
recitation is intended, such an intent will be explicitly recited
in the claim, and in the absence of such recitation no such
intent is present. For example, as an aid to understanding,
the following appended claims may contain usage of the
introductory phrases “at least one” and “one or more” to
introduce claim recitations. However, the use of such
phrases should not be construed to imply that the introduc-
tion of a claim recitation by the indefinite articles “a” or “an”
limits any particular claim containing such introduced claim
recitation to inventions containing only one such recitation,
even when the same claim includes the introductory phrases
“one or more” or “at least one” and indefinite articles such
as “a” or “an” (e.g., “a” and/or “an” should typically be
interpreted to mean “at least one” or “one or more”); the
same holds true for the use of definite articles used to
introduce claim recitations. In addition, even if a specific
number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such
recitation should typically be interpreted to mean at least the
recited number (e.g., the bare recitation of “two recitations,”
without other modifiers, typically means at least two reci-
tations, or two or more recitations). Furthermore, in those
instances where a convention analogous to “at least one of
A, B, and C, etc.” is used, in general such a construction is
intended in the sense one having skill in the art would
understand the convention (e.g., “a system having at least
one of A, B, and C” would include but not be limited to
systems that have A alone, B alone, C alone, A and B
together, A and C together, B and C together, and/or A, B,
and C together, etc.). In those instances where a convention
analogous to “at least one of A, B, or C, etc.” is used, in
general such a construction is intended in the sense one
having skill in the art would understand the convention (e.g.,
“a system having at least one of A, B, or C” would include
but not be limited to systems that have A alone, B alone, C
alone, A and B together, A and C together, B and C together,
and/or A, B, and C together, etc.). It will be further under-
stood by those within the art that virtually any disjunctive
word and/or phrase presenting two or more alternative
terms, whether in the description, claims, or drawings,
should be understood to contemplate the possibilities of
including one of the terms, either of the terms, or both terms.
For example, the phrase “A or B” will be understood to
include the possibilities of “A” or “B” or “A and B.” Further,
unless otherwise noted, the use of the words “approximate,”
“about,” “around,” “substantially,” etc., mean plus or minus
ten percent.

The foregoing description of illustrative embodiments has
been presented for purposes of illustration and of descrip-
tion. It is not intended to be exhaustive or limiting with
respect to the precise form disclosed, and modifications and
variations are possible in light of the above teachings or may

20

25

30

35

40

45

50

55

60

65

18

be acquired from practice of the disclosed embodiments. It
is intended that the scope of the invention be defined by the
claims appended hereto and their equivalents.

What is claimed is:

1. A method for validating integrity of a source server
backup comprising:

receiving, at a recovery server, data indicating a state of

a data storage unit associated with a source server;
creating a virtual hard drive image from the received data;
storing, in memory of the recovery server, the created

virtual hard drive image;

booting a virtual machine using the stored hard drive

image;

mounting a second drive image to the virtual machine

including tools facilitating access to an operating sys-
tem running on the virtual machine by an application
running on the recovery server, the tools prevented
from being installed in an operating system running on
the source server;

automatically detecting, by a recovery application run-

ning on the virtual machine, that the second drive

image includes the tools;

automatically installing, by the recovery application and

without user intervention, the tools in the operating

system running on the virtual machine; and
controlling, by the application running on the recovery
server, applications running on the virtual machine.

2. The method of claim 1, further comprising determining,
by the application running on the recovery server, that the
virtual machine is functioning properly.

3. The method of claim 2, further comprising storing, at
the recovery server, the virtual hard drive image as an
acceptable backup image for the source server.

4. The method of claim 1, further comprising:

receiving an indication that the source server failed; and

booting the virtual hard drive image in response to

receiving the indication that the source server failed.

5. The method of claim 1, further comprising determining,
by the application running on the recovery server, that the
virtual machine is an acceptable backup for the source server
based on a recovery time objective.

6. The method of claim 1, further comprising causing the
source server to cease transmission of data indicating a state
of the data storage unit associated with the source server.

7. The method of claim 1, the data indicating the state of
the data storage unit comprises application files.

8. The method of claim 6, the data indicating the state of
the data storage unit further comprises operating system
files.

9. The method of claim 6, the data indicating the state of
the data storage unit does not comprise operating system
files.

10. The method of claim 1, further comprising installing,
on the source server, a backup agent that searches for the
tools on accessible drives.

11. The method of claim 10, said automatically installing
the tools is caused by the backup agent.

12. A device for validating integrity of a source server
backup comprising:

a memory device that stores data indicating a state of a

data storage unit associated with a source server; and

a processor, operatively coupled to the memory device,

that:

creates a virtual hard drive image from the received data;

stores, in the memory device, the created virtual hard

drive image;

boots a virtual machine using the stored hard drive image;

US 9,448,834 B2

19

mounts a second drive image to the virtual machine
including tools facilitating access to an operating sys-
tem running on the virtual machine by a device appli-
cation, the tools prevented from being installed in an
operating system running on the source server;

runs the device application;

automatically detects, via a recovery application running

on the virtual machine, that the second drive image
includes the tools;

automatically installs, via the recovery application and

without user intervention, the tools in the operating
system running on the virtual machine; and

controls, via the device application, applications running

on the virtual machine.

13. The device of claim 12, the processor further deter-
mines, by the application running on the recovery server,
that the virtual machine is functioning properly.

14. The device of claim 13, the processor further stores,
in the memory device, the virtual hard drive image as an
acceptable backup image for the source server.

15. The device of claim 12, the processor further deter-
mines, via the device application, that the virtual machine is
an acceptable backup for the source server based at least in
part on a recovery time objective.

16. The device of claim 12, the data indicating the state of
the data storage unit comprises application files.

17. The device of claim 16, the data indicating the state of
the data storage unit further comprises operating system
files.

10

20

20

18. The device of claim 12, the state of the data storage
unit includes a backup agent that facilitates backup of the
data storage unit.

19. The device of claim 18, said automatically installing
the tools is caused by the backup agent.

20. A non-transitory computer-readable medium includ-
ing computer-readable instructions that, upon execution by
a processor, cause a device to:

receive data indicating a state of a data storage unit

associated with a source server;

create a virtual hard drive image from the received data;

store, in memory of the device, the created virtual hard

drive image;

boot a virtual machine using the stored hard drive image;

mount a second drive image to the virtual machine

including tools facilitating access to an operating sys-
tem running on the virtual machine by an application
running on the recovery server, the tools prevented
from being installed in an operating system running on
the source server;

automatically detect, via a recovery application running

on the virtual machine, that the second drive image
includes the tools;

automatically install, via the recovery application and

without user intervention, the tools in the operating
system running on the virtual machine; and

control, via the application running on the recovery

server, applications running on the virtual machine.

#* #* #* #* #*

